Exam 1
 Chapter 1

Answer the following questions. You must show your work to receive full credit. Indicate your final answer with a box.

1. (5 points) Create the truth table for implication; i.e. $p \rightarrow q$.
2. Consider the statement "If it is not raining or I have my umbrella, then I am not wet." Let

$$
p \text { :"It is raining," } q \text { :"I have my umbrella," and } r \text { :"I am wet." }
$$

(a) (5 points) Write the above statement using symbolic logic.
(b) (5 points) Suppose that r is true; i.e. I am wet. What compound statement involving p and q must be true? (You can use either symbolic logic or you can write out the statement in words.) Hint: Use the contrapositive.
3. (10 points) Consider the following statements:

$$
\begin{aligned}
& p=\text { "It is snowing today." } \\
& q=\text { "It is warmer than yesterday." } \\
& r=\text { " We will go skiing." } \\
& s=\text { "We will go to the mall. }
\end{aligned}
$$

Prove the following using a two-line proof (a proof table).

$$
\left.\begin{array}{c}
\neg p \wedge q \\
r \rightarrow p \\
\neg r \rightarrow s
\end{array}\right\} \Rightarrow s
$$

Statements ${ }^{\text {Reasons }}$
4. The domain for this problem is some unspecified collection of numbers. Consider the predicate

$$
P(x, y)=" x \text { is greater than } y . "
$$

(a) (4 points) Translate the following statement into predicate logic.

Every number has a number that is greater than it.
(b) (3 points) Negate your expression from part (a), and simplify it so that no quantifier or connective lies within the scope of a negation.
(c) (3 points) Translate your expression from part (b) into understandable English. Don't use variables in your English translation.
5. Recall that an integer a is even if there exists and integer k such that $a=2 k$. Let n_{1} and n_{2} be even integers.
(a) (3 points) Write n_{1} and n_{2} in terms of k_{1} and k_{2}, respectively.
(b) (3 points) Write the product $n_{1} n_{2}$ in terms of k_{1} and k_{2}. Simplify your answer.
(c) (1 point) Is $n_{1} n_{2}$ even or odd?
6. (3 points) What is the difference between an axiom and a theorem?
7. (10 points) Recall that for two integers x and y, we write $x \mid y$ whenever there exists an integer k such that $y=k x$. Prove the following statement using a direct proof:

Let a, b and c be integers. If $a \mid b$, then $a \mid(b \cdot c)$.
8. (10 points) Recall that an integer a is odd if there exists and integer k such that $a=2 k+1$. Also recall the definition of even on problem 6. Prove the following statement by contraposition: Let x be an integer. If $x^{2}+x+1$ is even, then x is odd.
9. (10 points) Recall that an angle is obtuse whenever it is greater than 90°. Use

Theorem 1 The sum of the measures of the angles of any triangle (in Euclidean geometry) is equal to 180°.
to give a proof by contradiction to the following statement:
A triangle cannot have more than one obtuse angle.

Extra Credit 1. (5 points)Recall the axiomatic system of the four-point geometry.
Undefined terms: point, line, is on
Axioms:

1. For every pair of distinct points x and y, there is a unique line l such that x is on l and y is on l.
2. Given a line l and a point x that is not on l, there is a unique line m such that x is on m and no point on l is also on m.
3. There are exactly four points.
4. It is impossible for three points to be on the same line.

Definition 4. A line l passes through x if x is on l.

How many distinct lines are there in the four-point geometry? Hint: Draw a model if it is helpful.

Extra Credit 2. (5 points) Let a be a logical statement. Is $a \rightarrow \neg a$ a contradiction?

